

Recycled Water Basis of Design Reports

January 2016 Workshop

Recycled Water Basis of Design Reports

...Scenario Details

January Workshop - Agenda

Time	Item		
5:30 – 5:35	Introduction to Workshop, by General Manager Dave Pedersen		
5:35 – 5:40	Workshop Agenda, presented by Dr. Steve Weber		
5:40 – 5:50	Recap of December Workshop and Discussion of Risks, presented by Steve Weber		
5:50 – 6:15	Exercise #1 - Teamwork		
6:15 – 6:30	Break/ Light dinner		
6:30 – 7:30	Presentation on Scenario 4 and 5 Details, presented by Dr. Steve Weber, James Borchardt, and Oliver Slosser		
7:30 - 7:40	Break		
7:40 - 8:10	Exercise #2 - Criteria		
8:10 – 8:15	Closing and Next Steps, presented by Dave Pedersen		

December Workshop

 Project Timeline Scenario 4 and 5 – Overview - Supply and Demand - Reservoir Operations - Water Quality • PESTLE Exercise – Risks

Risk Review

- 159 Risks Identified (PESTLE)
- Each Risk was Categorized and Given an Implementation Group
- Mitigation Strategies Identified for all
- Assigned an Owner

PESTLE Category	Grand Total
Political	35
Economic	30
Social	28
Technical	29
Legal	17
Environmental	20
Grand Total	159

Category	Risks
NIMBY	26
AGENCY COORD	17
PROJECT COST	12
DEMAND	11
WATER QUALITY	10
DW STANDARDS	8
YUCK	8
BRINE	7
CEQA	7
POLITICS 6	
ROW/LAND	6
WATER RIGHTS	5
LAND COST	4
OPERATIONS	4
POWER	4
TECHNOLOGY	4
DROUGHT	3
AWTP COST	2
EARTHQUAKE	2
ELECTIONS	2
HABITAT	2
IDLE FACILITIES	2
REGULATORY	2
CUSTOMER	1
LIABILITY	1
PARTNERS	1
SYSTEM COST	1
WASTE OF MONEY	1
Grand Total	159

Risk Summary

Owner	Risks
FINANCE	20
GM/JPA BOARD	14
MWH	58
OUTREACH	37
FACILITY DIRECTOR	30
GRAND TOTAL	159

EXERCISE #1

- Team 1 59
- Team 2 84
- Team 3 119
- Team 4 65
- Team 5 DQ

BREAK/ LIGHT DINNER

SCENARIO 4 – INDIRECT POTABLE REUSE USING LAS VIRGENES RESERVOIR

SCENARIO 4

SCENARIO 4 SCHEMATIC

Site Layout

This map has been designed to print size 11" by 17".

AWT Layout

AWT Considerations

- Spare units ensure continuous operation
- In unlikely event of process upset, AWT would be contained onsite until resolved
- AWT would be connected to sewer for recovery of residuals at Tapia WRF

Emergency Operations

- AWT Plant must shut down for 24 hours before serving water from LV Reservoir.
- Storage in potable system would supply customers until water can be drawn from LV Reservoir.
- AWT can be shut down for up to two days using Reservoir 2.
- For longer shutdowns, AWT may be connected to storm drain system so flows could be diverted.

Pump Stations and Tanks

Recycled Water Hydraulic Profile - Scenario 4

Seasonal Operation Strategy - Winter

Seasonal Operation Strategy - Summer

RECYCLED WATER SUPPLY AND DEMAND

Recycled Water Supply and Demand

Brine Flow Diagram

Brine Line Location

This map has been designed to print size 11" by 17".

Brine Disposal Compliance

• AWTP Design Parameters

- Plant Capacity: 6 MGD
- RO Recovery: 85%
- Brine Line Capacity: 0.9 MGD
- Compliance
 - <u>SMP Discharge Limits:</u>
 - Brine quality complies with all SMP Discharge limits
 - <u>NPDES Discharge Limits:</u>
 - Proposed Hill Canyon effluent complies with Conejo Creek NPDES Discharge Limits under historical conditions

Estimated Capital Cost

ltem	Description	Estimated
Number		Total Cost
		(In Millions)
1	AWT Plant (6 MGD)	\$38
2	AWT Inlet Pipeline	\$1.1
3	AWT Outlet Pipeline	\$6.3
4	Brine Line	\$4.0
5	Mixing System	\$0.5
	Subtotal	\$50
	Contingency (25%)	\$13
	Engineering and Admin (15%)	\$7.5
	Est. Total Construction Cost	\$71

Estimated O&M Cost (Based on 2014 Flows)

ltem	Description	Quantity (AF)	Unit Price	Estimated Total
Number			(\$/AF)	Cost
				(In Thousands)
1	RWPS West Pump Station	2,000	\$25	\$50
2	AWT	1,700	\$900	\$1,500
3	Mixing System	9,500	\$25	\$250
4	Westlake WTP	200	\$150	\$30
5	Brine Discharge Fee*	300	\$1,500	\$450
	Subtotal			\$2,300
	Contingency (10%)			\$230
	Est. Total O&M Cost		\$1,500	\$2,500
	Imported Water Savings	1,700	\$900	(\$1,500)
	Est. Net O&M Cost			\$1,000

*Based on typical WWTP O&M Costs, to be negotiated with City of Thousand Oaks

Potential Partners

• Scenario 4

- City of Thousand Oaks
- Calleguas Water District
- Camrosa Water District
- City of Westlake Village
- Metropolitan Water
 District of Southern
 California
- State of California

THE METROPOLITAN WATER DISTRICT of SOUTHERN CALIFORNIA

SCENARIO 5 – RECYCLED WATER STORAGE USING ENCINO RESERVOIR

SCENARIO 5

This map has been designed to print size 11" by 17".

SCENARIO 5 SCHEMATIC

Site Physical

Encino Reservoir Considerations

- Seismic Study of Dam
- Pump Station Construction (Proximity to Neighborhood)
- Vector Control
- Mixing & Aeration

Emergency Operations

- Emergency Storage
- Reservoir Drain to LA River
- Interim connection to LASanitary Sewers in case of pipe break

Pump Stations and Tanks

Recycled Water Hydraulic Profile - Scenario 5

Operation Strategy

SEASONAL OPERATION STRATEGY

Distribution Options

- LASanitation Sewer Connection in Encino
 - Would allow for discharge of RW to Tillman WWTP for retreatment
- LADWP Recycled Water Tie-in
 - Would allow for JPA to send recycled water directly to LADWP distribution system

Additional RW Customers

 Country Clubs and golf courses along new alignment that could be served by JPA

Connection to LASanitation Sewers

This map has been designed to print size 11" by 17".

Estimated Capital Cost

ltem	Description	Estimated
Number		Total Cost
		(In Millions)
1	RWPS East Pump Station Upgrade	\$4.0
2	Pipeline	\$36
3	Pump Station at Encino Reservoir	\$10
4	Strainers and Chlorination System	\$0.5
5	Mixing System	\$0.5
	Subtotal	\$51
	Contingency (25%)	\$13
	Engineering and Admin (15%)	\$7.6
	Est. Total Construction Cost	\$72

Estimated O&M Cost (Based on 2014 Flows)

ltem	Description	Quantity	Unit Price	Estimated
Number		(AF)	(\$/AF)	Total Cost
				(In Thousands)
1	RWPS East Pump Station	2,000	\$105	\$210
2	Treatment	1,600	\$60	\$100
3	Mixing System	6,000	\$25	\$150
4	Encino Pump Station	1,600	\$70	\$110
	Subtotal			\$570
	Contingency (10%)			\$57
	Est. Total O&M Cost			\$630

Potential Partners

- Scenario 5
 - LADWP
 - LASanitation
 - Metropolitan Water
 District of Southern
 California
 - State of California

THE METROPOLITAN WATER DISTRICT of SOUTHERN CALIFORNIA

EXERCISE: EVALUATION CRITERIA

- 1. Lifecycle Cost
- 2. Environmental Impact
- 3. Public Acceptance/ Community Impact
- 4. Water Supply Benefits
- 5. Regional Partnerships
- 6. Water Quality
- 7. System Flexibility
- 8. Funding Opportunities
- 9. Regulatory Compliance0

- 10. Emergency Supply
- 11. Susceptibility to Climate Change

9

High Importance

- 12. Project Schedule
- 13. Level of Uncertainty
- 14. Rate Impact

Low Importance

1. Lifecycle Cost

2. Environmental Impact

3. Public Acceptance

EVALUATION CRITIERA 4. Water Supply Benefits

5. Regional Partnerships

6. Water Quality

7. System Flexibility

8. Funding Opportunities

9. Regulatory Compliance

10. Emergency Supply

11. Susceptibility to Climate Change

Low Importance

High Importance

12. Project Schedule

EVALUATION CRITIERA 13. Level of Uncertainty

14. Rate Impact

Questions / Comments / Adjourn