Political Economic Social Technical Legal Environmental

POLITICAL

- Get out of Malibu Creek Re-use 100% of our water
- Leadership Board unity/consistent leadership
- Disconnect among rate payers, regulators, & utilities Public stakeholder buy-in Public support for project Stakeholder speak as one Support from environmental groups
- Project gets built and not bogged down by regulations Regulators support for project Changing Public Perception of DPR
- Partnership Regional Partnerships Public acceptance Create a project with large support Partnerships? Integrate resource concerns

- JPA decision process 3+3
- History of disagreement
- Election timing
- Water rates
- Active public
- Fiscally conserve. dems.
- Can't advocate only react
- Growth/No growth
- External relationships and partnerships
- Land use planning/zoning
- Increase level of reuse
- Create statement of purpose or charter
- Triunfo part of Ventura San. District
- Politics of Calleguas

- NIMBY
- Nat. Rec. area
- Federal Admin
- Rec. opportunities, hiking, horses
- Reuse, not waste

ECONOMIC

- Maximizing resources
- Avoid stranded costs
- How to price recycled water
 Funding
 Maximize the use of an imported and costly resource
 How to pay
 Cost/benefit
 Develop a plan for using reclaimed water that has benefits proportional to its costs
 Qualify for proposition 1 Section 8 money
- Impact on rate payers
 High water rates
 Cost of project
 Equitable cost/revenue sharing between LVMWD:TSD
 Funding and permitting an alternative to the creek
 Government financial support
 Affordable project for rate payers
 Recycled water storage cost
- Timing
- Banking future costs, pricing strategies
- Alternative financing P3
 Do we harden demand by adding purple pipe?
- Viable NPR customers
 Cost
 Financially feasible
 Efficient use of money
- Cost effective Bad science drives up costs Cost effective Project cost \$\$\$\$ Funding

Affordable water rates Pumping cost Efficient use of public money Beneficial to rate payers

- Rates/fees
- Lost revenue @ discharge
- TMDL compliance/penalties
- Ability to finance
- Grants
- Assessments
- LRP (\$250 / AF > \$350 / AF)
- Land acquisitions and scale
- Land exchanges
- Local job growth
- Economic zones fro A WQ
- Cost of future water/hydrology
- Trickle down impact of drought
- Tourism
- Aging infrastructure
- Competition for (police/fire)
- USACE funding without earmarks
- Title XVI
- Water bond
- Drought grants/IRWM page.84
- SRF \$
- 20% x2020
- Deliver all treated water to L.A.

SOCIAL

- Sustainable
 Sustainable water supply
 Future water supply
- Perpetuating bad habits
 End user reuse gray
 Water literate public
 Public support
- Yuck factor Public perception and acceptance
- Include recreation
 Create a water recreation area
 Public recreation reservoir
- Health & safety (env)
- Visual impact of infrastructure
- Timing
- Reduced portable imports
- Public awareness of costs/benefits
- Get community investments buy in
- Public Health
 Project protest public health
 Make DPR possible
- Eliminate unreasonable use and waste of water

Maximum benefit of waste water

Building resiliency in time of drought

• Incentives – change behaviors

- Community public support
 Consensus
 Improve conservation awareness of the general public
 Public support
 Public acceptance
 Outreach
 Public perception
 Partnerships
- Transparency

- NIMBY
- View sheets
- Community disruptions
- OAC's/Env.justice
- Employment
- Property values
- Rural culture
- Trail
- Growth
- Buy in for Rew-Ethos
- Fear of outsiders- provincial
- Need for education
- Lack of PR plans
- Sustainable/Green ethos
- Strong conservation program
- Community gardens (corn)
- Engage community in process

TECHNICAL

- Managing high flows to the plant
- Brine disposal
- Decentralize treatment infrastructure Store on existing hardscapes Large tanks on LVMWD spreading growth feasible for some storage How to best divide NPR/IPR/DPR recycled water use Safety (water safe for designated use Hybridize soft and hard watersheds
- Pipeline length (getting the water there)
- Hardened recycled demand committed recycle uses
- Innovation
- Available customers for additional RW
- Affordable O &M costs
- Landscape irrigation
- Improved pervious surfaces and storage
- Obsolescence of Technology
- Local conditions verses one solution fits all
- Technology verses practical solutions
- Beneficial reuse
- Reliability (water Supply)
 Local water reliance
 Reliable water
 Resiliency during drought
 Save drinking water

Piping mistakes---Cross contamination... Safe water Clean water

- Storm water recharge and reuse as part of portfolio
- Limited recycled water supply
- Can we really get of the creek year-round
- Settleable solids
- Eliminating dry water run off Qualifications of benefits
 Correct mix of storage disposal & DPR
 Deciding on an alternative to the creek
 Modeling realistic solutions to water scarcity
- Seasonal & Divrnal equalization
- Thorough project ideas
- Alternatives to MF/RO/AOP
- Certainty (Actions vs changing regs) Balance supply and demand Goal=100% beneficial reuse

- TMDL
- No GW storage
- Unique geology
- Seismicity
- Ecosystem
- Constrained alignments
- Topography
- Lack of tech. Competence
- Lack of definition | PR|DPR
- Land = room for solution
- Non-point source solution

- Maint. flow to creek
- Staffing resources
- Intuitional knowledge
- Water + WW treatment fac. Staff
- Rew distribution
- Infr. Condition aging infrastructure
- Reliance on imported water
- Poor lacking GW
- (E) Reservoir repurpose initially?
- USACE (404)
- DSOD
- Storm water
- Reduce discharges to Malibu Creek "O"

LEGAL

- Regulatory constraints & framework Regulations
- Permitting
- Zero discharge to Malibu Creek
- Public health
- Already protected public parklands cannot be default site for reservoir
- Keeping the Tapia plant permits

- TMDL compliance in Malibu Creek and Santa Monica Bay
- Building in national park, NEPA/CEQA
- Permitting in creek. NPDES
- ESA
- SWRCB/RWQCB
- Voting requirements
- Lawyers in community
- JPA construct 3+3 super majority
- Partnerships with others

ENVIROMENTAL

- Maintain fish flows
- Ocean water quality is getting/improving better because MS 4 progress
- Maximize resources
- Landscape native plants
 No grass
 Invasive species
 Healthy Malibu Creek ecosystem
- Red legged logs recover in water shed
 Steal head restoration/ protection must not be jeopardized
 Approximate Natural Native Hydrological System
- Improve the Malibu Creek water system
- Environmental stewardship/leadership Provide habitat for local Fauna, and Flora
- No water to Pacific
 No water in Malibu Creek
- Dealing with growth
- Resilience
- Regulations (all) Permitting requirements
- Take a the long view
- Resilience
- Conservation Conservation first
- Clean water in Malibu Creek and Santa Monica Bay

- Greenhouse gas
- Siting of reservoirs and other infrastructure

Runoff

Protecting Malibu Regulatory Challenges Revise ESA no treated H20 in creek Protecting beneficial uses of Malibu Creek Creek water quality Conservation Water Conservation Need reduction Landscape consumption 50%-70% of total Minimize runoff Unseasonal runoff

- Sustainability
- Clean drinking water
- Consider upstream changes over time (at user) point
- Lessening environmental impacts
 Environmental protection
 Environmental impacts
 Clean water
 Retire with knowing I contributed to the environment
 I believe that WQ in Malibu would improve with "more trees" and "more shade."

- CEQA/NEPA
- ESA
- Active
- Water Quality in creek
- Fire prone
- Noises
- Traffic

- Wildlife Corridor
- Drought
- Flooding
- Dam failure risk
- Sediment transport
- Odor
- Nearby landfill