PRELIMINARY HYDROLOGY & HYDRAULICS REPORT

FOR

PARCEL 2 OF PARCEL MAP NO. 15762

W.O. 01-537

CITY OF AGOURA HILLS

PREPARED BY:

HMK ENGINEERING, INC. 24007 VENTURA BLVD., SUITE 102 CALABASAS, CA 91302

MARK D. HARDY RCE 36538 EXP. 6/30/2004

08/28/02

DATE:

HYDROLOGY SUMMARY

The site is located on the south side of Agoura Road between Reyes Adobe Road and Lindero Canyon Road at the foot of Ladyface Mountain.

The proposed development consists of buildings, driveways and parking for a Retirement Home. There are three watercourses running through the site and they drain to Lindero Canyon Channel through a debris basin and a bulked flow storm drain at Agoura Road (Lindero Canyon Channel is on the north side of Agoura Road). The three watercourses running through the site will remain in their natural state and the on-site and off-site runoff will drain into these watercourses. The most westerly watercourse will have a retention basin before draining into the 78" storm drain that goes underneath Agoura Road. As Agoura Road will be widened the existing debris basin and bulked flow storm drain will have to be modified.

The runoff rate (Q) was taken from "L.A.C.F.C.D. Design Division Hydrologic Analysis Units" which was generated for the design of Lindero Canyon Channel. The design took into consideration the future development of this project.

All storm drain and flood control facilities will be built to L.A.C.F.C.D standards and maintained by the L.A.C.F.C.D.

HYDROLOGY

RAINF ALL ZONE K

SOIL 1: 028

DPA-7 (Debris Production Area)

DPV = 1.564 q=2.67 cfs/acre

OFF-SITE HYDROLOGY TABLE

AREA NO.	AREA(Ac.)	Q(cfs)	Obulked(cfs)
1	61	163	255
2	23	61	95
3	21	56	88

ON-SITE HYDROLOGY TABLE

AREA NO.	AREA(Ac.)	Q(cfs)	$\underline{\text{Opm}} = 0.438 \text{ cfs}$
1	0.52	1.4	0.749
2	0.12	0.3	0.017
3	0.12	0.3	0.017
4	0.94	2.5	0.135
5	0.44	1.2	0.173
6	0.49	1.3	0.187
7	0.12	0.3	0.017
8	0.29	0.8	0.042
9	1.20	3.2	0.195

1.1 METHOD FOR CALCULATING STANDARD URBAN STORMWATER MITIGATION PLAN FLOW RATES AND VOLUMES BASED ON 0.75-INCHES OF RAINFALL: WORKSHEET

PROJECT NAME

PM 15762 PARCEL 2 WD. 537

61 ACRES FLOW Cross Section for Irregular Channel

Project Descripti	on
Project File Worksheet	c:\haestad\fmw\470agour.fm2 AREA 1
Flow Element	Irregular Channel
Method	Manning's Formula
Solve For	Water Elevation

0.060		_
0.0300	00 ft/ft	
67.05	ft	
255.00	cfs	
	0.0300 67.05	0.030000 ft/ft 67.05 ft

HMK Engineering, inc.
Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666

FlowMaster v5.10 Page 1 of 1

PRELIMINARY HYDROLOGY & HYDRAULICS REPORT

FOR

PARCEL 2 OF PARCEL MAP NO. 15762

W.O. 01-537

CITY OF AGOURA HILLS

PREPARED BY:

HMK ENGINEERING, INC. 24007 VENTURA BLVD., SUITE 102 CALABASAS, CA 91302

MARK D. HARDY RCE 36538 EXP. 6/30/2004

08/28/02

DATE:

HYDROLOGY SUMMARY

The site is located on the south side of Agoura Road between Reyes Adobe Road and Lindero Canyon Road at the foot of Ladyface Mountain.

The proposed development consists of buildings, driveways and parking for a Retirement Home. There are three watercourses running through the site and they drain to Lindero Canyon Channel through a debris basin and a bulked flow storm drain at Agoura Road (Lindero Canyon Channel is on the north side of Agoura Road). The three watercourses running through the site will remain in their natural state and the on-site and off-site runoff will drain into these watercourses. The most westerly watercourse will have a retention basin before draining into the 78" storm drain that goes underneath Agoura Road. As Agoura Road will be widened the existing debris basin and bulked flow storm drain will have to be modified.

The runoff rate (Q) was taken from "L.A.C.F.C.D. Design Division Hydrologic Analysis Units" which was generated for the design of Lindero Canyon Channel. The design took into consideration the future development of this project.

All storm drain and flood control facilities will be built to L.A.C.F.C.D standards and maintained by the L.A.C.F.C.D.

HYDROLOGY

RAINF ALL ZONE K

SOIL 7: 028

DPA-7 (Debris Production Area)

DPV = 1.564 q=2.67 cfs/acre

OFF-SITE HYDROLOGY TABLE

AREA NO.	AREA(Ac.)	Q(cfs)	Obulked(cfs)
1	61	163	255
2	23	61	95
3	21	56	88

ON-SITE HYDROLOGY TABLE

AREA NO.	AREA(Ac.)	Q(cfs)	$\underline{\text{Opm}} = 0.438 \text{ cfs}$
1	0.52	1.4	0.749
2	0.12	0.3	0.017
3	0.12	0.3	0.017
4	0.94	2.5	0.135
5	0.44	1.2	0.173
6	0.49	1.3	0.187
7	0.12	0.3	0.017
8	0.29	0.8	0.042
9	1.20	3.2	0.195

1.1 METHOD FOR CALCULATING STANDARD URBAN STORMWATER MITIGATION PLAN FLOW RATES AND VOLUMES BASED ON 0.75-INCHES OF RAINFALL: WORKSHEET

PROJECT NAME

PM 15762 PARCEL 2 WD. 537

61 ACRES FLOW Cross Section for Irregular Channel

Project Description

Project File

c:\haestad\fmw\470agour.fm2

Worksheet

AREA 1

Flow Element

Irregular Channel

Method

Manning's Formula

Solve For

Water Elevation

Section Data

Wtd. Mannings Coefficient

0.060

Channel Slope

0.030000 ft/ft

Water Surface Elevation

67.05 ft

Discharge

255.00 cfs

HMK Engineering, inc.
Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666

FlowMaster v5.10 Page 1 of 1

61 ACRES FLOW Worksheet for Irregular Channel

April 1997 Control of the last	
Project Descripti	on
Project File	c:\haestad\fmw\470agour.fm2
Worksheet	AREA 1
Flow Element	Irregular Channel
Method	Manning's Formula
Solve For	Water Elevation

Input Data					
Channel Slope	0.030000) ft/ft			
Elevation range: 6		140			
Station (ft)	Elevation (ft)		Start Station	End Station	Devel
0.00	70.00		.0.00	140.00	Roughness
80.00	65.00			140.00	0.060
140.00	70.00				
Discharge	255.00	cfs			

Results			-
Wtd. Mannings Coefficient	0.060		-
Water Surface Elevation	67.05	ft	
Flow Area	58.64	ft ²	
Wetted Perimeter	57.46	ft	
Top Width	57.31	ft	
Height	2.05	ft	
Critical Depth	66.83	ft	
Critical Slope	0.05420	05 ft/ft	
Velocity	4.35	ft/s	
Velocity Head	0.29	ft	
Specific Energy	67.34	ft	
Froude Number	0.76	To y	
Flow is subcritical.			

21 ACRES FLOW Cross Section for Irregular Channel

Project Description

Project File

c:\haestad\fmw\470agour.fm2

Worksheet

AREA 3

Flow Element Method

Irregular Channel

Method Solve For

Manning's Formula

Water Elevation

Section Data

Wtd. Mannings Coefficient

0.060

Channel Slope

0.070000 ft/ft

Water Surface Elevation

76.73 ft

Discharge

88.00 cfs

HMK Engineering, inc.
Haestad Methods, Inc. '37 Brookside Road Waterbury, CT 06708 (203) 755-1666

FlowMaster v5.10 Page 1 of 1

21 ACRES FLOW Worksheet for Irregular Channel

Project Description	on
Project File	c:\haestad\fmw\470agour.fm2
Worksheet	AREA 3
Flow Element	Irregular Channel
Method	Manning's Formula
Solve For	Water Elevation

Input Data				
Channel Slope Elevation range: 7:	0.070000 ft/ft 5.00 ft to 80.00 ft			
Station (ft) 0.00 25.00 50.00 Discharge	Elevation (ft) 80.00 75.00 80.00 88.00 cfs	Start Station 0.00	End Station 50.00	Roughness 0.060

Results		
Wtd. Mannings Coefficient	0.060	
Water Surface Elevation	76.73	ft
Flow Area	14.98	ft²
Wetted Perimeter	17.65	ft
Top Width	17.31	ft
Height	1.73	ft
Critical Depth	76.81	ft
Critical Slope	0.0557	03 ft/ft
Velocity	5.87	ft/s
Velocity Head	0.54	ft
Specific Energy	77.27	ft
Froude Number	1.11	
Flow is supercritical.		

23 ACRES FLOW - Cross Section for Irregular Channel

Project Description	on
Project File	c:\haestad\fmw\470agour.fm2
Worksheet	AREA 2
Flow Element	Irregular Channel
Method	Manning's Formula
Solve For	Water Elevation

The state of the s		7
0.060		
0.0700	00 ft/ft	
61.13	ft	
95.00	cfs	
	0.0700 61.13	0.070000 ft/ft 61.13 ft

HMK Engineering, Inc.
Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666

FlowMaster v5.10 Page 1 of 1

23 ACRES FLOW Worksheet for Irregular Channel

Input Data				
Channel Slope	0.070000 ft/f			
Elevation range: 6				
Station (ft)	Elevation (ft)	Start Station	End Station	Roughness
0.00	65.00	0.00	165.00	0.060
55.00	60.00		100.00	0.000
165.00	65.00			
Discharge	95.00 cfs			

Results			1290
Wtd. Mannings Coefficient	0.060		
Water Surface Elevation	61.13	ft	
Flow Area	21.20	ft²	
Wetted Perimeter	37.48	ft	
Top Width	37.41	ft	
Height	1.13	ft	
Critical Depth	61.16	ft	
Critical Slope	0.06315	55 ft/ft	
Velocity	4.48	ft/s	
Velocity Head	0.31	ft	
Specific Energy	61.45	ft	100
Froude Number	1.05		
Flow is supercritical.			

A STATE OF THE STA	+ YAC 1	AC	// /		- T	385
Devision of the second of the	1		1× "	144	160	454
200 . 2.67 USE FOR DESIGN Q'	2.35	196	14	110	1.82	7
	3.3	15	2	29	30	101
	2.85	70	3	10	200	307
	2:	85	4	115	140 330	-3-
	3	111	5	. 38	150	455
	2.1	68	6	44	89	18
	3	24	7.	3.3	180	286
	4.27	89	8	107	380 70	73
	7.5	28	9	31	50	145
	2.9	17	10	17	11-5-70	2/
			AA	8.		35
			18	13	1,42	59
			10	22	Electric W	
			14	40		16
	4		3A	6	776	40
			1	15		
			K	25	11.0	123
			L	24	P.C.	64
			N	2.5	13.38	经
			P	3		8
			0	6.	4.0	16
				24 12	- 計模學	2
			7A 11 A	15	2.23	40
	man T No.		Q	1/2	9.5	32
			G		1	
	net je					
			1	127		
)	3 #0 = 1	V			
	6		3		1.1	
A CONTRACTOR OF THE PARTY OF TH	4		3			
0 0 0	V		ERNO			
The state of the s	OL			>		
PART OF A PROPERTY AND A PROPERTY AN	19/16	OURA RO			A	
THE YEAR OF THE STATE OF THE ST	7	145		-		
		• de la				
					A	
	نسنند	~			H	
1/6/1/0/	/		- 1 - 1		7	
	1				3	
					1.	
					3	
				10		
	430					
		25	7	NOFR	O CA	NYON
					. T 500 FFF.	THE COLUMN STREET
1000000000000000000000000000000000000						

1.1 METHOD FOR CALCULATING STANDARD URBAN STORMWATER MITIGATION PLAN FLOW RATES AND VOLUMES BASED ON 0.75-INCHES OF RAINFALL: WORKSHEET

PROJECT NAME

PM 15762 PARCEL 2 W.O. 537

HOMENCLATURE

```
Impervious Area (acres)
14
                    Pervious Area (acres)
· 'sp
               =
                    Contributing Undeveloped Upstream Area (acres)
\mathbf{y}^{j}.
                  Total Area of Development and Contributing Undeveloped Upstream Area (acres)
· LTotal
                    Developed Runoff Coefficient
D
                    Undeveloped Runoff Coefficient
ិប
                    Rainfall Intensity (inches / hour)
X
                    Peak Mitigation Flow Rate (cfs)
PM
                    Time of Concentration (minutes, must be between 5-3 O min.)
rc
M
                    Mitigation Volume (ft<sup>3</sup>)
```

EQUATIONS

```
A_1 + A_P + A_{11}
Total
               (A<sub>Total</sub> * % of Development which is Impervious)
A
               (A<sub>Total</sub> * % of Development which is Pervious)
Ap
              (A<sub>Total</sub> * % of Contributing Undeveloped Upstream Area***)
'Au
ි
              (0.9 * Imp.) + [(1.0 - Imp.) * C_{U}]
                                                                        If C_D < C_U, use C_D = C_U
        = C_D * I_X * A_{Total} * (1 hour / 3,600 seconds) * (1 ft / 12 inches) * (43,560 ft<sup>2</sup> / 1 acre)
Q<sub>PM</sub>
              C<sub>D</sub> * I<sub>X</sub> * A<sub>Total</sub> * (1.008333 ft<sup>3</sup>-hour / acre-inches-seconds)
T_{C}
        = 10^{-0.507} * (C_D * I_X)^{-0.519} * Length^{0.483} * Slope^{-0.135}
             (0.75 \text{ inches}) * [(A_1)(0.9) + (A_P + A_U)(C_U)] * (1 ft/12 inches) * (43,560 ft^2/1 acre)
VM
              (2,722.5 \, ft^3 / acre) * [(A_I)(0.9) + (A_P + A_U)(C_U)]
```

*** Contributing Undeveloped Upstream Area is an area where storm water runoff from an undeveloped upstream area will flow directly or indirectly to the Post-Construction Best Management Practices (BMPs) proposed for the development. This additional flow must be included in the flow rate and volume calculations to appropriately size the BMPs.

PILOVIDE PROPOSED PROJECT CHARACTERISTICS

A. otal 3.04 Ac

T: pe of Development HOSPITAL

Predominate Soil Type # 28

% of Project Impervious 80%

% of Project Pervious 20%

% of Project Contributing
Undeveloped Area

A₁ 2,432 Acres

A₁ 0.608 Acres

A₁ Acres

De eloped by I. Nasseri, J. Pereira, T. Piasky, & A. Walden

DETERMINING THE PEAK MITIGATED FLOW RATE (QPM):

In order to determine the peak mitigated flow rate (Q_{PM}) from the new development, use the Los Angeles County Department of Public Works Hydrology Manual. Use the Modified Rational Method for collecting the peak mitigation Q_{PM} for compliance with the Standard Urban Stormwater Mitigation Plan (SUSMP). Use attached Table 1 for all maximum intensity (I_X) values used.

By trial and error, determine the time of concentration (Tc), as shown below:

CALCULATION STEPS:

1 Assume an initial T_C value between 5 and 30 minutes.

7: 30 minutes

Using Table 1, look up the assumed T_C value and select the corresponding I_X intensity in in ches/hour.

I 0,193 inches/hour

3 Determine the value for the Undeveloped Runoff Coefficient, C_U, using the runoff coefficient curve corresponding to the predominant soil type.

(v 0.180

- Calculate the Developed Runoff Coefficient, $C_D = (0.9 * lmp.) + [(1.0 lmp.) * C_U]$ = (0.9)(0.8) + (0.2)(0.100) = 0.744 $C_D = (0.9)(0.8) + (0.2)(0.100) = 0.744$
- . Calculate the value for C_D * I_X

Cp*1x 0.143

Calculate the time of concentration, $T_C = 10^{-0.507} * (C_D * I_X)^{-0.519} * Length^{0.483} * Slope^{-0.135} = 10^{-0.135} = 10^{-0.507} * (C_D * I_X)^{-0.519} * Length^{0.483} * Slope^{-0.135} = 10^{-0.135} = 10^{-0.507} * (C_D * I_X)^{-0.519} * Length^{0.483} * Slope^{-0.135} = 10^{-0.135$

Calculated T_C 60 minutes

Calculate the difference between the initially assumed $T_{\rm C}$ and the calculated $T_{\rm C}$, if the difference is greater than 0.5 minutes. Use the calculated $T_{\rm C}$ as the assumed initial $T_{\rm C}$ in the second iteration. If the $T_{\rm C}$ value is within 0.5 minutes, round the acceptable $T_{\rm C}$ value to the nearest minute.

ABLE FOR ITERATIONS:

Iteration No.	Initial T _C (min)	l _X (in/hr)	C _U	C _D	C _D *I _X (in/hr)	Calculated T _C (min)	Difference (min)
1	12	6.2.3	0,155				
2							
3							
4	gar Vota						
5			Z.Bu N III				
6							
7	F/T LPG12	100					
8	200	V _a made					
9	mency (smile)		The Leave				
10							

A :ceptable	T _C value	30	minutes

8. Calculate the Peak Mitigation Flow Rate, $Q_{PM} = C_D * I_X * A_{Total} * (1.008333 ft^3-hour / acre-inches-seconds)$ $Q_M = 0.432 cfs$

TABLE 1

INTENSITY - DURATION DATA FOR 0.75-INCHES OF RAINFALL FOR ALL RAINFALL ZONES

Duration, T _C (min)	Rainfall Intensity, I _x (in/hr)
5	0.447
6	0.411
7	0.382
8	0.359
9	0.339
10	0.323
11	0.309
12	0.297
13	0.286
14	0.276
15	0.267
16	0.259
17	0.252
18	0.245
19	0.239
20	0.233
21	0.228
22	0.223
23	0.218
24	0.214
25	0.210
26	0.206
27	0.203
28	0.199
29	0.196
30	0.193

DETERMINING THE VOLUME (V_M)

In order to determine the volume (V_M) of stormwater runoff to be mitigated from the new development, use the following equation:

$$V_{M} = (2,722.5 \text{ ft}^{3}/\text{acre}) * [(A_{1})(0.9) + (A_{P} + A_{U})(C_{U})] = 5957.97 \text{ ft}^{3}$$

44	_	-	N		I X	A	
7		-	14	$\boldsymbol{\smile}$	IA	A	

A.1 METHOD FOR CALCULATING STANDARD URBAN STORMWATER MITIGATION PLAN FLOW RATES AND VOLUMES BASED ON 0.75-INCHES OF RAINFALL: WORKSHEET

PROJECT NAME

PM 15762 PARCEL 2

DETERMINING THE VOLUME (V_M)

$$V_M = (2,722.5 \text{ ft}^3 / \text{acre}) * [(A_I)(0.9) + (A_P + A_U)(C_U)]$$

TABLE 1

INTENSITY - DURATION DATA FOR 0.75-INCHES OF RAINFALL FOR ALL RAINFALL ZONES

Duration, T _C (min)	Rainfall Intensity, Ix (in/hr)
5	0.447
6	0.411
7	0.382
8	0.359
9	0339
10	0323
11	0309
12	0.297
13	0.286
14	0.276
15	0.267
16	0.259
.17	0.252
18	0.245
19	0.239
20	0.233
21	0.228
22	0.223
23	0.218
24	0.214
25	0.210
26	0.206
27	0.203
28	0.199
29	0.196
30	0.193

APPENDIX A

TABLE FOR ITERATIONS:

Iteration No.	Initial T _C (min)	l _x (in/hr)	C _U	C_{D}	$C_D * I_X$ (in/hr)	Calculated T _C (min)	Difference (min)
1							
2							
3							
4							
5	Mag and						
6							
7							100
8							
9		Barrier Barrier	100 - 70				
10						6/79 200 21 21	

Acceptable T _C value 30	minutes
------------------------------------	---------

8. Calculate the Peak Mitigation Flow Rate,

$$Q_{PM} = C_D * I_X * A_{Total} * (1.008333 \text{ ft}^3\text{-hour/acre-inches-seconds})$$

DETERMINING THE PEAK MITIGATED FLOW RATE (Q_{PM}) :

In order to determine the peak mitigated flow rate (Q_{PM}) from the new development, use the Los Angeles County Department of Public Works Hydrology Manual. Use the Modified Rational Method for calculating the peak mitigation Q_{PM} for compliance with the Standard Urban Stormwater Mitigation Plan (SUSMP). Use attached Table 1 for all maximum intensity (Ix) values used.

By trial and error, determine the time of concentration (T_C), as shown below:

CALCULATION STEPS:

1. Assume an initial T_C value between 5 and 30 minutes.

 T_{c} minutes

2. Using Table 1, look up the assumed T_C value and select the corresponding I_X intensity in inches/hour.

0.193 I_X inches/hour

3. Determine the value for the Undeveloped Runoff Coefficient, C_U, using the runoff coefficient curve corresponding to the predominant soil type.

0.100 C_{U}

4. Calculate the Developed Runoff Coefficient, $C_D = (0.9 * Imp.) + [(1.0 - Imp.) * C_U]$

 C_{D} 0.836

5. Calculate the value for C_D * I_X

CD * IX 0.161

6. Calculate the time of concentration, $T_C = 10^{-0.507} * (C_D * I_X)^{-0.519} * Length^{0.483} * Slope^{-0.135}$ 6. Calculate the time of concentration, $T_C = 10^{-0.507} * (C_D * I_X)^{-0.519} * Length^{0.483} * Slope^{-0.135}$ 6. Calculate the time of concentration, $T_C = 10^{-0.507} * (C_D * I_X)^{-0.519} * Length^{0.483} * Slope^{-0.135}$

30 minutes

7. Calculate the difference between the initially assumed T_C and the calculated T_C , if the difference is greater than 0.5 minutes. Use the calculated T_C as the assumed initial T_C in the second iteration. If the T_C value is within 0.5 minutes, round the acceptable T_C value to the nearest minute.

APPENDIX A

PROVIDE PROPOSED PROJECT CHARACTERISTICS

A_{Total} 12 Acres

Type of Development STREET

Predominate Soil Type # 28

% of Project Impervious 92%

% of Project Pervious 8%

% of Project Contributing Undeveloped Area

0%

A_I ______ Acres

A_P O, Acres

A_U ______ Acres

NOMENCLATURE

A Impervious Area (acres) Pervious Area (acres) A_{P} Contributing Undeveloped Upstream Area (acres) $A_{\rm U}$ Total Area of Development and Contributing Undeveloped Upstream Area (acres) AToul C_{D} Developed Runoff Coefficient Undeveloped Runoff Coefficient C_{U} Rainfall Intensity (inches / hour) I_{X} Peak Mitigation Flow Rate (cfs) Q_{PM} Time of Concentration (minutes, must be between 5-3 O min.) Tc V_{M} Mitigation Volume (ft3)

EQUATIONS

 $A_1 + A_P + A_U$ ATotal (A_{Total} * % of Development which is Impervious) $A_{\rm I}$ (A_{Total} * % of Development which is Pervious) A_{P} (A_{Total} * % of Contributing Undeveloped Upstream Area***) $A_{\rm U}$ $(0.9 * Imp.) + [(1.0 - Imp.) * C_u]$ CD If $C_D < C_U$, use $C_D = C_U$ = $C_D * I_X * A_{Total} * (1 hour / 3,600 seconds) * (1 ft / 12 inches) * (43,560 ft² / 1 acre)$ Q_{PM} C_D * I_X * A_{Total} * (1.008333 ft³-hour / acre-inches-seconds) 10^{-0.507} * (C_D * I_X)^{-0.519} * Length ^{0.483} * Slope ^{-0.135} T_{C} $(0.75 \text{ inches}) * [(A_1)(0.9) + (A_P + A_U)(C_U)] * (1 ft/12 inches) * (43,560 ft^2/1 acre)$ V_{M} $(2,722.5 \text{ ft}^3/\text{acre})*[(A_I)(0.9)+(A_P+A_U)(C_U)]$

*** Contributing Undeveloped Upstream Area is an area where stormwater, runoff from an undeveloped upstream area will flow directly or indirectly to the Post-Construction Best Management Practices (BMPs) proposed for the development. This additional flow must be included in the flow rate and volume calculations to appropriately size the BMPs.