MUNICIPAL

EST. 1958

STER DISTRYS

PLC Programming Standards

Las Virgenes Standards
6518021-STD-00

= RGEN
LR W aES

Las Virgenes Standards
PLC Programming Standards

Document Revision History

00 10/31/19 Issued for release. M. Gassaway

Page 2 of 10

Las Virgenes Standards
PLC Programming Standards

Table of Contents
1 P U DO i 4
O Yol o] o 1< I OO OSOOO T SOT PO P PP PPPPPPPPPPPPPPRS 4
1.2 ACrONYMS & ADDIEVIAtIONSviiii et et 4
1.3 Notation and NOMENCIATUIEiiiiiie ettt 4
1.3.1 StaTE MACHINES/ DI AMS ...ttt e et eeeeraee e 4
1.4 General Considerations and ASSUMPTIONS ...ccuvviii ittt e et e e sareee s 5
141 INPUES @NA OULPULS c.oveiiiiiee ettt ettt ettt e et e e et e e et e e e stb e e e nteeeaseeeaseeeaaee e 5
i 10 0= S O U PO PO PP PPPP PPN 5
2 CONrol SYSTEM ArCHITECIUINE ...oii e 6
2.1 SSC Control SYStemM ArChITECIUIE ..o et 6
3 Software Development ENVIFONMENT ..o.ui e e e e et 7
3L ROCKWEIL ekttt 7
3101 STUAIOS000 ...ttt 7
T ol o[1T T [= OSSR P SO U PR TP P PRUPPRPRPPRO 7
3.2.1 ECOSErUXUre CONTIOI EXPEIT oottt ettt e e eae e et e 7
N o To [O ¢ a 1.4 L o] o PSR USRS UUURRURUUPRNE 7
4.1 Tasks, Programs, and ROULINESciiiiiiii e e et e e 7
D FAUILS @GN IMIBSSAEES ..ttt e ettt e ettt e e ettt e e e ettt e e e e ettt e e e e et e e e e et it e e e e e e e e e e et e e e e e etaraeas 9
6 USEr-DefiNed Data TYPES oottt et e ettt e et e e e st e et as 9
VA e d<To [<] (T aTo WD L= RV o <IN RSP RPPRRORPURRR 10
7.1 ROCKWEIL ..ottt ettt bbbttt 10
7.2 SCNNEIAET .ottt ettt e et ettt et e e e et beeetaea s 10

Page 3 of 10

Las Virgenes Standards
PLC Programming Standards

1 Purpose

The purpose of this standards (STD) document is to offer a description of how each controller within the plant
should be programmed and communicate with each other and associated HMI/SCADA applications. The
primary function of this STD is to provide guidance for the PLC logic, overall architecture of the software and
the algorithms used to implement the requirements imposed on. It is not intended to provide holistic details
such as those that are mechanical in nature or specific equipment/process operation typically found in the
standard operating procedures (SOP). This document is not a maintenance or operations manual; however it
does supply the important design information necessary for a thorough understanding of how each PLC
program is organized and the common features.

1.1 Scope

This document is intended to be a general overview of programming guidelines and implementation. It should
be used in conjunction with other standards documents for HMI/SCADA, Tag Naming Conventions, etc.

1.2 Acronyms & Abbreviations

Term Definition
HMI Human Machine Interface
SCADA Supervisory Control and Data Acquisition
LVMWD Las Virgenes Municipal Water District
PC Personal Computer
PLC Programmable Logic Controller
SCS System Controller Supervisor
SSC Subsystem Controller
VFD Variable Frequency Drive

1.3 Notation and Nomenclature

1.3.1 State Machines/Diagrams
Functional control of the various processes within the facility shall be controlled utilizing a state machine. This

state machine shall be able to intelligently determine the state the equipment/process is in and systematically
move through the various states of operation for said piece of equipment/process based upon a variety of

Page 4 of 10

Las Virgenes Standards
PLC Programming Standards

preset and predetermined conditions including operator input, normal sequence of equipment operation,
abnormal conditions, interlocks and error handling. The state machine utilized by the Contractor shall be
flexible and scalable to be able to be utilized for control scenarios that have minimal states and/ or inputs as
well as control scenarios that have several states and/ or multiple inputs.

This state machine shall reside in the PLC and corresponding graphics/user interface shall be developed for the
corresponding HMI and/or SCADA system which will allow Operations to monitor and control the status of
various equipment/processes including the current state it is in and actionable data (Fault Status, Alarm State,
Next State, etc.) that will better help Operations make informed decisions on how to operate the system,
including giving them the ability to take over the system manually by taking the state machine out of Auto/
Remote mode.

State diagrams are often used to illustrate logic. They are generally based on UML conventions for such
diagrams.

State “entry” and “exit” actions, and state transitions, are all implemented as one-shot actions in the PLC. State
“do” actions are continuously executed while the logic is in that state. The action itself can be a typical PLC
instruction, like Latch; if the action is Set, or no command is given, it is assumed that the PLC instruction is an
OTE().

All timers in the state diagrams should be treated as local timers (one for each instance of the state diagram)
unless specified otherwise.

Documentation including all equipment/ process relationship map, control strategy, and exception handling
strategy for each state machine and the associated equipment/ process it controls shall be provided as part of
this project. Documentation shall also include an automated tool that allows for ease of configuration and
installation as well as for ongoing maintenance of the system/ state machines.

1.4 General Considerations and Assumptions

1.4.1 Inputs and Outputs

It is assumed for all state machines that inputs do not change within the update/evaluation period of the logic
(the design presumes that the logic is executed instantaneously). Therefore, in implementation, the software
may have to internally buffer inputs on a per-scan or per-state machine level in order to achieve this data
consistency requirement. This may be an issue in a Standard task because inputs can change as soon as a new
packet arrives from the input card, even during the program scan and thus needs to be accounted for.

1.4.2 Timers
Timers used in this document have the following properties:

- All times (unless otherwise noted) are specified in seconds.
- Elapsed Time or Accumulated Time: The total time which the timer has been "run".

- Expiration/Expired: When the elapsed time of the timer equals or exceeds a preset value, the timer is
said to have expired. It is assumed that the timer does not continue to run (elapsed time does not continue to
increase) after it has reached its expiration.

Timers have the following interfaces to control their operation:
Page 5 of 10

Las Virgenes Standards
PLC Programming Standards

- Reset: A timer's accumulated time is set to zero. The timer continues to time up from zero if it is also
being asked to Run when the reset occurs.

- Run: The timer accumulates elapsed time when the timer is instructed to run.

- Pause: The timer stops accumulating time when it is instructed to pause, but the elapsed time is
retained. A subsequent Run command would add time to the retained value.

Note that in a typical PLC implementation (using a Timer On instruction), removing the Run request also resets
the timer to zero, so it is not necessary to explicitly reset the timer in most cases. Also, a Pause is typically
implemented by disabling a retentive timer (which allows the timer accumulated value to remain intact).

2 Control System Architecture

The control system implements a distributed architecture with dedicated control systems for different parts of
the plant, as applicable. The distributed control systems are as follows:

e SCS-XXX: The System Controller Supervisor (SCS) is the overall coordinator and manager for the plant.
The SCS sets the operating mode and interfaces with the other control systems to coordinate the overall
plant as required. The SCS also is responsible for the Falling Tower, Water Cannon, Bomb Run, Dock
Hits, and Tipping Drums effects.

e SSC-XXX: This Subsystem Controller (SSC) is responsible for the individual equipment/process in which is
it is controlling.

Elements of the distributed control system communicate with each other via Ethernet I/P, using direct
messaging between controllers to exchange control and status information.

The following diagram represents the control systems that work together to make up the overall plant control
system and shows how each SSC could potentially communicate with each other.

SSC-XXX [€Ethemet |/ SSC-XXX [€Ethemet /P> SSC-XXX
Ethemet I/P Ethemet I/P Ethemet I/P
SCS-XXX

Figure 1-1, Control System Architecture (placeholder)

2.1 SSC Control System Architecture

The SSC is comprised of one ControlLogix PLC (controller) and associated I/O.

Page 6 of 10

Las Virgenes Standards
PLC Programming Standards

3 Software Development Environment

3.1 Rockwell

3.1.1 Studio5000

Studio5000 is the Allen-Bradley programming tool used to configure, program, monitor, and troubleshoot the
controller.

3.2 Schneider

3.2.1 EcoStruxure Control Expert

EcoStruxure (Formerly Unity Pro) is the Schneider programming tool used to configure, program, monitor, and
troubleshoot the controller.

4 Code Organization

4.1 Documentation

All Routines, Rungs and Tags will have appropriate descriptions and definitions. Routines need to have brief
descriptions of the tasks that are implemented. Rungs need to have descriptions of the process that is being
accomplished. All Tags should have a description describing the event/process/reading that it is associated with.

4.2 Tasks, Programs, and Routines

The SCS/SSC has one task, the Main Task and is configured to be continuous with a 500ms watchdog.

The execution periods and watchdog values are shown in the following table:

Task Continuous | Watchdog (ms)
TOO_MainTask X 500

Within the Main Task are the Programs which are used to organize the software into modules that accomplish
one major function or similar functions. The Programs are listed in the Controller Organizer in the order of
execution. Each Program name begins with Pxx_, where xx is a two-digit number that begins at 00 and
increments with each additional program.

Below each Program are Routines which contain the executable code. The Routine is used to isolate the
software into manageable cells containing one or more lines of code executing a defined process. The Routines
can be modularized into subroutines that can be called multiple times.

Each Routine name begins with Rxx_, where xx is a two-digit number that begins at 00 and increments with
each additional routine (numbering restarts at 00 within each new Program). The first Routine is always
considered to be the “Main Routine” and is assigned as such for its Program; it can either contain all of the logic
for that Program, or it can use a series of subroutine calls to jump to other Routines with the Program (if the
logic is sufficiently complex that multiple Routines are needed). Its name is always ROO_MainRoutine.

Page 7 of 10

Las Virgenes Standards
PLC Programming Standards

This naming convention allows Routines to be listed in order of execution, assuming the programmer numbers
them accordingly (the Rockwell development application only lists Routines alphabetically, regardless of how
they are called; by following this naming scheme, the on-screen list matches the order of execution). The
following table lists all Tasks, Programs, and Routines commonly used within the SCS/SSC.

Programs Routines
Controller Task Contents
(in order of execution) (in order of execution)
ROO_MainRoutine General Routine for calling required subroutines in Program
RO1_System Mapping and manipulation of all system inputs
RO2_Digitals Mapping and manipulation of all digital inputs
POO_Inputs RO3_Analogs Mapping and manipulation of all analog inputs
R0O4_Derived Mapping and manipulation of all calculated/derived inputs
RO5_HMI Mapping and manipulation of all HMI inputs
RO6_XXX Continuation of any additional input programs (added as required)
ROO_MainRoutine General Routine for calling required subroutines in Program
RO1_System Mapping and manipulation of all system outputs
R0O2_Digitals Mapping and manipulation of all digital outputs
PO1_Outputs R0O3_Analogs Mapping and manipulation of all analog outputs
MainTask
(Continuous) R0O4_Derived Mapping and manipulation of all calculated/derived outputs
RO5_HMI Mapping and manipulation of all HMI outputs
RO6_XXX Continuation of any additional output programs (added as required)
RO0_MainRoutine Fault Reset pulse
P0O2_Alarming RO1_System_AlmSum System Alarm Summary
RO2_XXX_AlmSum Process Alarm Summary (added as required)
ROO_MainRoutine General Routine for calling required subroutines in Program
P10_Control Continuation of additional control programs named appropriately
RO1_XXX)
(added as required)
ROO_MainRoutine Process fault messages/status
P20_Communicatien RO1_Messaging Configuration of all messaging instructions to other SSC controllers
Continuation of additional comm. programs named appropriately
RO2_XXX)
(added as required)

Page 8 of 10

Las Virgenes Standards
PLC Programming Standards

5 Alarms/Faults/Messages

Various parts of the program can generate alarms, messages and faults. Alarms are alerts resulting from
physical I/0. Messages typically are just text strings that are displayed on an HMI for the benefit of operators,
maintenance, etc. so that they can determine the current state of the system and also to help with
troubleshooting. Faults are a message (text string) plus some response by the control system (shut down a
piece of equipment, or trigger an Emergency Stop, for example).

5.1 Alarms

All alarms shall have ability to be shelved, silenced or placed into maintenance mode to avoid nuisance alarms,

both locally through an HMI or the SCADA system. Each instrument with an associated alarm shall have its own
dedicated Input or Output for alarm notification as applicable and shall not be combined into only one general

fault.

5.1 Faults and Messages

For both faults and messages, the local (SSC) HMI as well as the SCS HMI can print these messages. They are
triggered to do so by receiving the messages tag, which is a UDT of Booleans that represent the individual
messages (for example, messages.valvel01FailedToClose).

The messagesUDT is defined as follows:

UDT: messagesUDT

Member Data Type Description

Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

There is one tag of this type, called messages. This tag is read by the SCS/SSC HMI.

6 User-Defined Data Types

There are various User-Defined Data types that are used throughout the application. They are used to combine
data types (often Boolean and Double Integer, but it can be any data type, including other UDTs) into more
complex ones.

Page 9 of 10

Las Virgenes Standards
PLC Programming Standards

Typically, these complex data structures are then used to represent collective information about physical or
logical equipment (for example, MSG_CommData which contains the Data used in messaging between
controllers) or to represent the state of a particular piece of logic (for example, the systemModeUDT which
contains Booleans to represent the different modes that the SCS can be in).

All UDTs need to be defined and approved by an LVMWD representative.

7 Predefined Data Types

Utilization of the native controller library needs to be used as defined below.

7.1 Rockwell
The basis for this guide is the use the latest edition of the Rockwell Automation Library of Process Objects PROCES-
RMO002G-EN-P. The most current Process Library version should be used, which as of Aug. 2019 is Version 4.10.00
We recommend that you use this manual along with these additional references:

e PROCES-RMO001 — Reference Manual

e PROCES-RMO013 — Describes the logic per Library object

e PROCES-RMO014 — Describes the display elements per Library object
e PROCES-UMO003 — Application User Manual

7.2 Schneider

The general library should be used and all User-Defined Data Types should be created to match the Rockwell
library.

Page 10 of 10

